翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kravchuk matrix : ウィキペディア英語版
Krawtchouk matrices
In mathematics, Krawtchouk matrices are matrices whose entries are values of Krawtchouk polynomials at nonnegative integer points.〔N. Bose, “Digital Filters: Theory and Applications” (Elsevier, N.Y., 1985 )〕
〔(P. Feinsilver, J. Kocik: Krawtchouk polynomials and Krawtchouk matrices, ''Recent advances in applied probability'', Springer-Verlag, October, 2004 )〕
The Krawtchouk matrix ''K(N)'' is an ''(N+1)×(N+1)'' matrix. Here are the first few examples:


K^=\begin
1
\end
\qquad
K^=\left (\begin
1&1\\
1&-1
\end\right
)
\qquad
K^=\left (\begin
1&1&1\\
2&0&-2\\
1&-1&1
\end\right
)
\qquad
K^=\left (\begin
1&1&1&1\\
3&1&-1&-3\\
3&-1&-1&3\\
1&-1&1&-1
\end\right
)


K^=\left (\begin
1&1&1&1&1\\
4&2&0&-2&-4\\
6&0&-2&0&6\\
4&-2&0&2&-4\\
1&-1&1&-1&1
\end\right
)
\qquad
K^=\left (\begin
1& 1& 1& 1& 1& 1\\
5& 3& 1&-1&-3&-5\\
10& 2&-2&-2& 2& 10\\
10& -2&-2& 2& 2&-10\\
5& -3& 1& 1&-3&5\\
1& -1& 1&-1& 1&-1
\end\right
).


In general, for positive integer N, the entries K^_ are given via the generating function
: (1+v)^\,(1-v)^j=\sum_i v^i K^_
where the row and column indices i and j run from 0 to N.
These Krawtchouk polynomials are orthogonal with respect to symmetric binomial distributions, p=1/2.〔(Hahn Class: Definitions )〕
==See also==

*Square matrix

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Krawtchouk matrices」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.